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Why high pT correlations?

1) Very noticeable modifications at RHIC

2) A lot of handles available: angle, rapidity,
flavor, energy, spin?!

3) At large enough Q”2, should be computable
from first principles

4) More differential observables better test of
calculations and models of QGP!

5) Direct measurement of fundamental properties
of the QGP, density profile, c_s, n !



Which jet correlations and why?

1) Near-side Jet correlations at very high-pT:
Constraint over-all gluon density
Check on consistency of calculations,
Gluon density profile!!

2) Away side Jet correlations at low pT:

Complete jet extinction
Hadronization from collective modes in matter:
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High Q”2, high pt / fragmenting outside
the medium!

For a given Q”*2, higher pr means more boost, longer lifetime/ shorter medium

. —

® Lose energy by partonic interaction, medium may be
hadronic or partonic

® Emerge as partons and then fragment
* Require knowledge of single and double fragmentation functions

Dz,g<z) Dzlhz(zl,zz)



The primary qualitative observations
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A too naive picture

The black core scenario

ldentify an annulus with
RAA * TAB

All jets come from here
unmodified any direction

All jets, in the black
region are trapped,
any energy

Dihadrons may resolve
this structure.



What one calculates essentially are the two cross-sections
d o
dy dp T,

do™"

*dydp; dp;.

~ [ dx,dv,G (x,) G (x,) S Dl (2)

~ [ d zydx,dx,G (x,) G(x,) 2L DI(z, z,)

fde di

in pp and in AA collisions

The main difference is in the fragmentation functions

D" =D+ A D (medium)

ADN_fdl?"de(lT’Rorigin’R XB)P(Z)
x| dy,dy, | Matter|G"*(y;) G, (v;)|Matter|

length >

X.-N. Wang and X. Guo, NPA 696, 788 (2001);
A. Majumder, E. Wang, X.-N. Wang nucl-th/0412061; A. Majumder EPJC 43, 259 (2005).



DIS In cold nuclear matter: an ideal calibration

NN TN A

Simple expressions for a
Gaussian density distribution
for nucleons in a medium sized

nucleus |
_rz \
_ 2R,’
p(r)=pye -
1/3 N — f
Mod~C A" (F(x,)xG" (x

2 2
xX; Ry

T r = Formation time S — T 5 5
X, YT,

R 4 =Nuclear size
y = boost

What you actually measure is f dy, dy, (A|F ( v,)F (y,) |A)

which simplified to G(x) in a nucleus



* Fit C to the Nitrogen data, rest is prediction

* v, Q is measured, direct measure of modified fragmentation
* Drop with A in D(z)

» Suppression and enhancement in D(z1,z2)
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Moving on to Heavy-ion collisions, the Raa...

Keeping it simple,

calculations will not include Cronin effect

No recombination, no detailed balance
Remain above 8 GeV! 0
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Double inclusive,

Double inclusive is the number of pairs!
If N flavors detected, there are N*N pairs

Big difference between charged pion associated
yield and Charged hadrons associated yield.

In RAA the same number goes in both numerator
and denominator

Going from pions to charged hadrons will cause
upward shift in associated yield.



A flavor number dependence in the assoc. yield

Calculation Pra, >8GeV, p, . >6GeV
includes all 0.05 ———T T
hadrons, g"ﬂﬁ 0.045 - 4 - N
g 004 O STARh'h -
no correction 5 00351 allh™h :
for decays E"’:'* 003 -
Included. _E D.UEJ—N ~
-— 0.02 ﬁ —
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ek

Very preliminary! Npﬂrt



Asking questions about the medium

For a given P, there is a distribution of p
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Distribution of p without E-

Loss

@butian of p with E-Loss

/ Energy loss selects events with
a higher initial parton energy

when you trigger on hadron pT




Trigger bias in pp versus central Au-Au

Calculation
shows,
noticeable
trigger bias

Very preliminary!
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Look at a very

Where are the jets coming from ? Surface bias
central event \

and make annular 6.5
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pairs par tiggar 1A dNCidi-jetid (Ap)

Low Pt on away side
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One explanation: Mach Cones

Alternate possibility: Cherenkov radiation



Matter from 1-2Tc may have heavy colored bound states
E. Shuryak and |. Zahed, PRC70:021901,2004; PRD70:054507,2004.

A

2K

» Away side partons travel through a lot more matter

» Jet can excite collective modes of dense matter!

* If the s-QGF has heavy colorzd (bound) states

» Soft gluons effect transitions between these states




Any medium has a permitivity €

C C
Gluon phase velocity, V=—=—
n e
0 0
coxn il PD) =P (p)
A(x,t)~exp|ip|x ; t) ,

In Regular HTL finite temperature
calulations E<p,

Gluon scatters off massless quarks
and gluons

Will also happen in a scalar theory
with massless scalars




Solve a simple scalar theory with two massive scalars

. o~ ::“‘:.

In the medium, solve dispersion relation (p’)V-p'=I(p’, p,T)
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What causes the large negative self energy?

» Space like virtual “TL === '4”7
intermediate state {
*» Due to large mass " o &
gap, cannot excite the E \
intermediate state to its

on-shell energy

e
[—]
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=
I

Regular Cherenkov, gives small E- _
loss n

b2
(=]
I

Scattering induced Cherenkov Brem.
gives large E-loss, 0

V. Koch, A. Majumder, X.N. Wang, PRL 96, 172302 (2006);



Induced radiation with out Cherenkov dispersion relation

dN , 1 (l_e—(T—li)z) - 2Ez(1—=z)

_ _
dzdi> It T P4+ (1—2)1T

Including the Cherenkov dispersion relation,
modifies the radiated gluon splitting function

d N (2] 18
gzoc 2 . 2(1_6 ( f)) L6 |
dzdi®> (1> +(1—z)I0)

increases the E-Loss 02 |~

0 ‘0.5“”1”“1.5””2‘”
A. Majumder, X. N. Wang, PRC (to appear) Lo,



We did this case What about this

what happens at this energy

Low energy gluon




We are talking about this
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kind of Cherenkov

But, it could also happen
at a particular higher freq.
as it does in water.

Then Cherenkov radiation
will happen at a particular
energy only!

Also requires that the

imaginary part takes a dip aty

this energy
If Ch. gluons have a

finite energy,
only a few of them
will not give a

clear 3-particle corr.
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Summary!

1) Jets provide ideal, caliberated probes of the
dense medium.

2) Jet correlations provide both tests and new
Insight into the properties of the medium

3) A complete calibrated setup of jet correlation
observables will define the medium in terms of its

unknown parameters!

4) These parameters will constrain models of QGP



Back up!!
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The dihadron frag. func. has a different shape than the

single hadron frag. func.

Convolutes differently with the initial parton cross section
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The kinds of diagrams that need to be
evaluated !

The second diagram has two independent

fragmentations
can be factorized in the collinear limit as...
uv
aw fdz (z,/z,z,lz)H""+ f dZ D (ZI/Z>Dg<Zz/(1—Z>)HW

dz dz, 1—z) ¢

H" =




Lowering the pT of the associated particle
Make the jet fragment at the Reco. stage...

Start by recasting fragmentation in Vacuum in terms of
recombination of constituent quarks:

Need a parton to constituent quark fragmentation function,

Combine the constituent quarks into a meson by means of the
meson wave-function

Immersing in a thermal medium automatically gives TS, TT

Pion wavefunction

Thermal distribution of
constifuent quarks



Can recombination be included in jet formalism?

What is a fragmentation
function ?
Dq z f d* p4T
(27)
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p

T .(p.p,)|=

fipop)=fdxe™ Y ollollp,, S-11p, S-1[a(x]0

Expressing the meson in terms of constituent quarks

k.|

po=] dxdk p(x, k)

sV, 17

P

q

DY (z)= Cf; dz, RM(lez)Féqm(zl,z—zl)

Ry (x)=|p(x)f

Only works if the wave function is sharply peaked at x = 0.5, kt=0
Only then are interference contributions zero!
Can this be checked??



Energy dependence of energy loss

p-g=Mv

Increasing
forward energy
of the jet
reduces the
modification
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Ramping up to flat distributions
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Ramping up to the LHC

At root s =2TeV e

Prie = 2P e
= Prac = Ponc

R_AA flat-ish! 13
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Correlations at LHC !
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The basic picture behind the
formalism

Where the jet fragments relative to the medium
Influences its outcome!

QGP

Perturbative Non—perturbative



Why high pT correlations?

1) Very noticeable modifications at RHIC

2) A lot of handles avalilable: angle, rapidity,
flavor, energy, spin?!

3) At large enough Q”2, should be computable
from first principles

4) More differential observables better test of
assumptions in calculations and models of

QGP!

5 May allow for direct measurement of
fundamental properties of the QGP, c_s, n!!



Analogue of near side in cold matter: DIS on

o nuclei

\ o 13 : HERMES Preliminary ® Kryptor

/ 12 . (z,>0.5) M Mitrogen

e B |

° ° ! i ‘ +
‘R2h is like IAA : | ++ H +
‘replace p with D o5 | P.DiNezza @
i S?sﬂ%‘ggfuncertqinty 3% (2%) Kr (N)

.;replace pT With b4 o 01 02 03 o4 Iz[;.s

No.of eventswithat least 2hadrons with z >0.5

_No.of eventswithat least onehadronwith z>0.5

RZh_ . .
sameratioondeuterium



