The 2nd International Conference on Hard and Electromagnetic Probes in High-Energy Nuclear Collisions Asilomar, CA, June 9 – 16, 2006

Factorization of Heavy Quarkonium Production

Jianwei Qiu Iowa State University

With G.C. Nayak and G. Sterman Phys. Lett. B (2005), Phys. Rev. D (2005), and in preparation

June 14, 2006

Jianwei Qiu, ISU

Outline

- Heavy quarkonium
- **Existing production models and their successes**
- □ Surprises experimentally
- □ Surprises theoretically
- □ Factorization of heavy quarkonium production
- □ Lessons from pQCD factorization of light hadrons
- **Summary and Outlook**

Good probes for a dense medium

- **Basic requirements:**
 - Cleanly measurable experimentally
 - Reliably calculable theoretically
- □ Necessary conditions:
 - Sensitive to the scales and properties of strong interacting matter – low momentum scale (a few hundred MeV)
 - Large momentum transfer to ensure pQCD calculation
 - a hard probe sensitive to low momentum physics
- Potentially good probes:
 - Have two observed scales (one hard and one soft)
 - Have one observed hard scale and a steeply falling distribution

Quarkonium could be a good probe

□ It has two intrinsic scales:

Heavy quark mass:

Heavy quark pairs are produced at a distance scale much less than fm $\Delta r \sim \frac{1}{2m_Q} \leq 0.1 \text{ fm} \text{ (for a charm-quark pair)}$

 $\leq 0.025 \text{ fm}$ (for a b-quark pair)

PQCD is expected to work for the production of heavy quarks

Quarkonium binding energy:

for both charm and bottom quarkonia

The transition from a heavy quark pair to a quarkonium should be sensitive to the soft physics

J/w Suppression in QGP

Heavy quarkonium provides a non-relativistic system, potentially, very similar to a QED bound state

Charm: $\frac{v^2}{c^2} \sim \frac{k_Q^2}{m_o^2} \sim \frac{|M^2 - 4m_c^2|}{4m^2} \sim 0.3$ Bottom: $\frac{v^2}{c^2} \sim 0.1$

 \Box Color screening in QGP suppresses the formation of J/ ψ

Potential: $V_{O\bar{O}}(r) \Rightarrow V_{O\bar{O}}(r,T)$ Wave function: $\Phi_{Q\bar{Q}}(r) \rightarrow \Phi_{Q\bar{Q}}(r, r)$ $\Phi_{Q\bar{Q}}(r, T) \rightarrow \Phi_{Q\bar{Q}}(r, T)$ J/ ψ formation rate $\propto \left| \Phi_{o\bar{o}}(r,T) \right|^2$

 J/ψ suppression \Leftrightarrow medium properties

Matsui & Satz (1986)

□ Calibration:

Do we understand the production mechanism of J/ψ well enough to extract the information on QGP?

The basic production mechanism

Production of a heavy quark pair, and followed by the formation of a quarkonium via coherent soft interactions between the pair

Production models:

Different models \Leftrightarrow Different assumptions/treatments to the non-perturbative transition from the QQ pair to a quarkonium

Color singlet model

- color singlet pair
- right quantum numbers
 for the quarkonium
- same wave function for production and decay

$$\sigma_{_{AB\rightarrow\psi}}\propto\sigma_{_{AB\rightarrow(Q\bar{Q})}}\left|R_{\psi}\left(0
ight)\right|^{2}$$

Einhorn and Ellis (1975), ...

- absolutely normalized predictions
- predictions on polarization
- quantum interference
 between production and
 formation suppressed

Works well for J/ψ production in photo-production and others But, one order of magnitude too small for CDF data, ...

Color Evaporation Model

Fritsch (1978); Halzen; ...

- all pairs with invariant mass less than open flavor threshold
- color and spin average

$$\sigma_{AB \to \psi} = f_{\psi} \int dm_{Q\bar{Q}}^2 \frac{d\sigma_{AB \to (Q\bar{Q})}}{dm_{Q\bar{Q}}^2}$$

- a single constant for non-perturbative formation
- one constant for one quarkonium state

Works well for total cross sections, not perfect for distributions, Predicts zero polarization for quarkonium production

Non-relativistic QCD (NRQCD) model

Bodwin, Braaten, Lapage (1985); ...

- All colored and uncolored pre-J/ψ heavy quark states can become color singlet J/ψ mesons
- $\hfill\square$ Production rate of J/ ψ is factorized

$$\sigma_{AB \to J/\psi} \left(M_{J/\psi} \right) \approx \sum_{[O]} \sigma_{AB \to [O]} \left(m_{c\overline{c}}^2 = M_{J/\psi} \right) \left\langle O_{J/\psi} \left(0 \right) \right\rangle$$

- **Quantum states [O] separated by spin and color**
- Transition probability is proportional to non-perturbative, but, universal local matrix elements
- □ Approximations/assumptions:
 - * velocity expansion $\langle p_Q p_{\bar{Q}} \rangle \ll 2m_Q$
 - factorization not proved

Successes of the production models

\Box Tevatron data for J/ ψ production

Other states as well:

E. Braaten et al. Annu. Rev. Nucl. Part. Sci. 46, 197 (1996)

\Box LEP data on J/ ψ photo-production: $\gamma\gamma \rightarrow J/\psi + X$

June 14, 2006

Jianwei Qiu, ISU

Surprises – experimentally

• ψ' polarization as a function of p_T :

E. Braaten et al. Phys. Rev. D62, 094005 (2000)

Jianwei Qiu, ISU

Inelastic Quarkonium Photoproduction at HERA

No room for color-octet contribution – universality?

June 14, 2006

Jianwei Qiu, ISU

QWG's report

Surprises – theoretically

- None of the factorized production models, including NRQCD model, were proved theoretically
- □ Factorization of NRQCD model clearly fails for low p_T

□ Factorization of NRQCD model might work for large p_T

Spectator interactions are suppressed by (1/p_T)ⁿ

□ Factorization of single hadron inclusive at large p_T

$$d\sigma_{A+B\to H+X}(p_T) = \sum_i d\tilde{\sigma}_{A+B\to i+X}(p_T/z,\mu) \otimes D_{H/i}(z,m_c,\mu) + \mathcal{O}(m_H^2/p_T^2)$$

Prove NRQCD Factorization,

$$d\sigma_{A+B\to H+X}(p_T) = \sum_{n} d\hat{\sigma}_{A+B\to c\bar{c}[n]+X}(p_T) \langle \mathcal{O}_n^H \rangle$$

To prove:
$$D_{H/i}(z, m_c, \mu) = \sum_{n} d_{i\to c\bar{c}[n]}(z, \mu, m_c) \langle \mathcal{O}_n^H \rangle$$

Divergences in $\langle \mathcal{O}_n^H \rangle$ cancels divergences in $D_{H/i}(z, m_c, \mu)$

June 14, 2006

Jianwei Qiu, ISU

□ Breakdown of NRQCD factorization at v² at NNLO:

Color neutralization is IR divergent – nonperturbative!

IR divergences cancel between real and virtual diagrams

All IR divergences cancel between real and virtual diagrams, except

$$2 \operatorname{Re} IIIA^{(k_2^0 \operatorname{pole})}(q) = -\alpha_s^2 \frac{1}{3\varepsilon} \vec{q}^2$$
$$= -\alpha_s^2 \frac{1}{3\varepsilon} \frac{\vec{v}^2}{4}$$

This non-topological IR divergence Cannot be absorbed into the matrix elements $\langle O_n^H \rangle$

-1

Breakdown of NRQCD factorization

$$D_{H/i}(z, m_c, \mu) = \sum_n d_{i \to c\bar{c}[n]}(z, \mu, m_c) \langle \mathcal{O}_n^H \rangle$$

□ This non-topological IR divergence has to appear in the coefficient function, $d_{i \rightarrow c\bar{c}[n]}(z, \mu, m_c)$

Breakdown of NRQCD factorization at v^2 and at NNLO in α_s

□ The way out?

Try to modify the matrix elements so that they can absorb all IR divergences of the fragmentation function

Redefinition or Extension for NRQCD?

NRQCD matrix elements of heavy quarkonium production are not gauge invariant

$$\mathcal{O}_n^H(0) = \chi^{\dagger} \mathcal{K}_n \psi(0) \left(a_H^{\dagger} a_H \right) \psi^{\dagger} \mathcal{K}_n' \chi(0)$$

 \mathcal{K}_n , \mathcal{K}'_n : Product of color, spin, and covariant derivatives

Operator-valued gauge transformations do not always commute with $a_{H}^{\dagger}a_{H}$

□ Add gauge links to the operator:

$$\mathcal{O}_n^H(0) \to \chi^{\dagger} \mathcal{K}_{n,c} \psi(0) \Phi_l^{\dagger}[0,A]_{cb} \left(a_H^{\dagger} a_H \right) \Phi_l[0,A]_{ba} \chi^{\dagger} \mathcal{K}_{n,a}' \psi(0)$$

The IR poles from the gauge links cancel the same IR poles in the fragmentation functions leave the coefficient functions IR safe at NNLO

$$D_{H/i}(z, m_c, \mu) = \sum_{n} d_{i \to c\bar{c}[n]}(z, \mu, m_c) \left\langle \mathcal{O}_n^H \right\rangle$$

Factorization beyond v² and NNLO

- □ The IR pole (1/ε)v² is independent of the direction of the gauge link (or Wilson line)
 - \Leftrightarrow the modified, gauge invariant matrix elements are universal at least to NNLO in α_s and v²
- □ Velocity expansion is not good for charmonium
 - Large phase space available for gluon radiation:

$$Q^2 - 4M_C^2 \Longrightarrow 4M_D^2 - 4M_C^2 \approx 6 \text{ GeV}^2$$

Large possible velocity in production:

$$v_{\rm prod} \sim \frac{|k_c|}{M_c} \sim \sqrt{\frac{4M_D^2 - 4M_c^2}{4M_c^2}} \sim 0.88$$

Very different from decay:

$$v_{\rm decay} \sim \sqrt{\frac{4M_{{\rm J}/\psi}^2 - 4M_c^2}{4M_c^2}} \sim 0.48$$

Factorization at NNLO and all order in v²

□ New result:

The IR poles at all orders of v-expansion at NNLO are independent of the direction of the eikonal line

□ Significance:

Factorization for producing a heavy quark pair with a finite invariant mass, at least at NNLO in α_s

$$D_{H/i}(z,m_c) = \sum_n d_{n/i}(z,m_c,Q) \otimes \left\langle O_n^H(Q) \right\rangle$$

Recall: Collinear factorization vs. k_T factorization

Lessons from pQCD factorization

□ Predictive power of pQCD factorization:

- Infrared Safety of the short-distance part
- Universality of the parton distribution/fragmentation
- Fragmentation function represents a probability for a virtual parton to evolve into an observed hadron plus everything

$$D_{g \to \mathrm{J}/\psi}(z, m_c) \propto$$

Not equal to a square of hadron wave function

Formation of a heavy quarkonium from a pair of virtual heavy quarks – connection to the vacuum wave function? help of heavy quark mass?

J/ψ suppression

J/ψ is unlikely to be formed at the same time when the heavy quark pair was produced

If J/ψ were produced at the collision point:

> Expect Glauber model to work with a constant J/ψ – nucleon absorption

If J/ψ were formed much later:

> Effective cross section for breaking the coherence of a heavy quark pair may not be a constant

June 14, 2006

Jianwei Qiu, ISU

Summary and outlook

- Heavy quarkonium provides a "non-relativistic" system, and could offer some important perspectives to the formation of QCD bound states
- Heavy quarkonium has two intrinsic scales, and could be a good probe of QGP or other dense medium
- But, after 30 years, since the discovery of J/ψ, we still have not been able to fully understand the production mechanism of heavy quarkonia
- None of the factorized production models, including NRQCD model, were proved theoretically
- RHIC is offering an excellent opportunity to learn and exam the formation of QCD bound states – nuclear matter could be an effective filter to distinguish the production models.

Backup slices