
Some comments on angular
momentum sum rules and

off-forward PDFs
Elliot Leader

Imperial College London

Berkeley Workshop on Nucleon Spin Physics
June 2009

based on work done in collaboration with

Ben Bakker and Larry Trueman

– p. 1/12



Introduction

Draw attention to and comment on some issues

– p. 2/12



Introduction

Draw attention to and comment on some issues

Raise some queries

– p. 2/12



Matrix elements of J

Dependence of the matrix element on the variables pµ and
on covariant Sµ or rest frame sµ.
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Matrix elements of J

Dependence of the matrix element on the variables pµ and
on covariant Sµ or rest frame sµ.
The classic result of Jaffe and Manohar is incorrect.
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The J-M result for the expectation value is:

〈〈p, s|Ji|p, s〉〉JM =

1

4mp0

[

(3p2
0 −m2)si −

3p0 +m

p0 +m
(p.s)pi

]
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The J-M result for the expectation value is:

〈〈p, s|Ji|p, s〉〉JM =

1

4mp0

[

(3p2
0 −m2)si −

3p0 +m

p0 +m
(p.s)pi

]

We find, for any spin configuration (longitudinal, transverse
etc) the remarkably simple result (suppressing a
delta-function term):

〈〈p, s|Ji|p, s〉〉 =
1

2
si
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These look completely different.
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These look completely different.
But for a state of longitudinal polarization i.e when s = p̂

they agree!
But for transverse spin they are crucially different.
This difference is critical for the purpose of deriving angular
momentum sum rules, because these are derived for a fast
moving nucleon i.e. for p0 → ∞.

For transverse spin i.e. for s perpendicular to p the J-M
result gives:

〈〈p, s|Ji|p, s〉〉JM =
1

4mp0

[

(3p2
0 −m2)si

]

which → ∞ as p0 → ∞, so no sum rule is possible.

– p. 5/12



Ji defines Jq,g by

Jq,g 2S = 〈p, S|Ĵq,g|p, S〉

which is incorrect, but I don’t think it is ever used.
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Ji defines Jq,g by

Jq,g 2S = 〈p, S|Ĵq,g|p, S〉

which is incorrect, but I don’t think it is ever used.

The shortest and most direct way to obtain the correct
expression for the expectation value of J is actually from
consideration of the effect of rotations on a state vector.

But if one uses the approach via the energy momentum
tensor Tµν then to begin with the expectation value
depends on some of the scalar functions appearing in the
matrix element of Tµν . I’ll use Ji’s notation for these.
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〈ψp,s|M
ij|ψp,s〉 =

A

2M(p0 +M)
[pi(p × s)j − pj(p × s)i]

+
1/2(A+ B)

M
ǫijαβSαpβ
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ij|ψp,s〉 =

A

2M(p0 +M)
[pi(p × s)j − pj(p × s)i]

+
1/2(A+ B)

M
ǫijαβSαpβ

J(i=x,y,z) = ǫijkM
jk

Energy of proton fixes A = 1; Helicity of longitudinally
polarized proton fixes 1/2(A+ B) = 1/2

∴ BJi
proton = 0
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Ji writes (where the sum is over quarks and antiquarks )

A =
∑

q

Aq + Ag = 1 B =
∑

q

Bq +Bg = 0
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∑

q

Bq +Bg = 0

〈ψp,s|M
ij
q,g|ψp,s〉 =

Aq,g

2M(p0 +M)
[pi(p × s)j − pj(p × s)i]

+
1/2(A+B)q,g

M
ǫijαβSαpβ

In terms of 2nd moment of off-diagonal PDFs:

Aq(∆
2 = 0) = H

(2)
q (∆2 = 0) Bq(∆

2 = 0) = E
(2)
q (∆2 = 0)
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Something interesting!

Longitudinal polarization: s = (0, 0, 1) p = (0, 0, p)
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Something interesting!

Longitudinal polarization: s = (0, 0, 1) p = (0, 0, p)

What Ji calls Jq is really

〈ψ|Jq
z |ψ〉 ≡ Jq = 1/2(A+B)q

pq
z

p
= Aq

which agrees with Ji, but.......
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Transverse polarization: s = (1, 0, 0) p = (0, 0, p)
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Transverse polarization: s = (1, 0, 0) p = (0, 0, p)

〈ψ|Jq
x|ψ〉 =

1

2M
[(M − p0)Aq + 2p0 1/2(A+B)q]

〈ψ|Jq
x|ψ〉 =

1

2M
[MAq + p0Bq]

What happens as p0 → ∞ ???

Fock expansion in partonic wave functions shows that p0

term can only come from orbital angular momentum

Of course Jproton
x is fine, since

∑

q Bq = −Bg.
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(
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∴
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=
(
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Consistent with known result that
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A NEW APPROACH

• It is simple.

• It is short

• It works for any spin. Previous methods only

work for spin 1/2.

We know how rotations affect states. If |p, m〉
is a state with momentum p and spin projec-

tion m in the rest frame of the particle, and if

R̂i(β) is the operator for a rotation β about

the axis i, then

R̂i(β)|p, m〉 = |Ri(β)p, m′〉Ds
m′m[Ri(β)]

30



But rotations are generated by the angular mo-

mentum operators! i.e.

R̂i(β) = e−iβJi

so that

Ji = i
d

dβ
R̂i(β)

∣∣∣
β=0

From the above we know what the matrix ele-

ment of R̂i(β) looks like. So we simply differ-

entiate and put β = 0.

One technical point: you have to know that

the derivative of the rotation matrix for spin s

at β = 0 is just the spin matrix for that spin.

e.g. for spin 1/2 just σi.
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But rotations are generated by the angular mo-

mentum operators! i.e.

R̂i(β) = e−iβJi

so that

Ji = i
d

dβ
R̂i(β)

∣∣∣
β=0

From the above we know what the matrix ele-

ment of R̂i(β) looks like. So we simply differ-

entiate, multiply by i, and put β = 0.
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Thus we have

〈p′, m′|Ji|p, m〉 = i
∂

∂β
〈p′, m′|Ri(β)|p, m〉|β=0

One technical point: you have to know that

the derivative of the rotation matrix for spin s

at β = 0 is just the spin matrix for that spin.

e.g. for spin 1/2 just σz/2.
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Thus we have

〈p′, m′|Ji|p, m〉 = i
∂

∂β
〈p′, m′|Ri(β)|p, m〉|β=0

= i
∂

∂β

[
〈p′, m′|Ri(β)p, n〉Ds

nm[Ri(β)]
]
β=0

One technical point: you have to know that

the derivative of the rotation matrix for spin s

at β = 0 is just the spin matrix for that spin.

i.e. the matrix generator of rotations for that

spin e.g. for spin 1/2 just σi/2.
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Thus we have

〈p′, m′|Ji|p, m〉 = i
∂

∂β
〈p′, m′|Ri(β)|p, m〉|β=0

= i
∂

∂β

[
〈p′, m′|Ri(β)p, n〉Ds

nm[Ri(β)]
]
β=0

One technical point: you have to know that

the derivative of the rotation matrix for spin

s at β = 0 is just the spin matrix for that

spin. (more correctly: the matrix generator of

rotations for that spin) e.g. for spin 1/2 just

σi/2.
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COMPARISON OF RESULTS

For the expectation values we find, for any spin

configuration (longitudinal, transverse etc) the

remarkably simple result (suppressing a delta-

function term):

〈〈p, s|Ji|p, s〉〉 =
1

2
si

Recall that the JM result for longitudinal spin

was precisely:

〈〈p, s|Ji|p, s〉〉JM =
1

2
si

in complete agreement with our result.
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But for transverse polarization JM had:

〈〈p, s|Ji|p, s〉〉JM =
1

4mp0

[
(3p2

0 −m2)si

]

which disagrees with our result and which, as

we said, would imply no possibility of a trans-

verse sum rule.

With our correct result there is no fundamental

distinction between the transverse and longitu-

dinal cases.
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SUM RULES

Expand nucleon state as superposition of n-

parton Fock states.

|p, m〉 '
∑
n

∑

{σ}

∫
d3k1 . . . d3kn

ψp,m(k1, σ1, ...kn, σn)

δ(3)(p− k1...− kn)|k1, σ1, ...kn, σn〉.
Consider a nucleon moving along OZ with mo-

mentum p

There are two independent cases:

(a) Longitudinal polarization i.e. s along OZ.

The sum rule for Jz yields the well known result

1/2 = 1/2∆Σ + ∆G + 〈Lq
z〉+ 〈LG

z 〉
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(b) Transverse polarization i.e. s ⊥ p. The

sum rule for Jx or Jy yields a a new sum rule

1/2 = 1/2
∑

q, q̄

∫
dx∆T q(x) +

∑

q, q̄, G

〈LsT 〉

Here LsT is the component of L along sT .

The structure functions ∆T qa(x) ≡ h
q
1(x) are

known as the quark transversity or transverse

spin distributions in the nucleon.

As mentioned no such parton model sum rule is

possible with the J-M formula because, as p →
∞, for i = x, y the matrix elements diverge.
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A comment about the calculation and meaning

of the orbital angular momentum.

For each parton labelled r there is an orbital

term involving

i(kr × ∇kr
)iδ

3(p − k1 − k2.... − kr.... − kn)

Beautifully consistently can show that this leads

to two terms. The first

i(p × ∇p)iδ
3(p′ − p)

i.e the angular momentum of the nucleon as a

whole about the origin. This cancels the same

term on the LHS of the sum rule.
13
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The second is

δ(3)(p′ − p)〈Li〉m′m (1)

where 〈Li〉m′m is the contribution from the in-

ternal angular momentum arising from the par-

tons

〈Li〉m′m =
∑
n

∑
r

∫
d3k1 . . . . . . d3knψ∗p,m′(k1, ...kn, )

{[−i(kr ×∇kr)i]ψp,m(k1, ...kr, ...kn)}
δ(3)(p− k1 − ...− kn)

This is the usual QM form for angular momen-

tum!
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The second is

δ(3)(p′ − p)〈Li〉m′m (2)

where 〈Li〉m′m is the contribution from the in-

ternal angular momentum arising from the par-
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It is absolutely crucial to note that the sum

rule involves a SUM of Quark and Antiquark

densities.

Not realizing this has led to some misunder-

standings.

What some people call the TENSOR CHARGE

of the NUCLEON is the difference between

quark and antiquark contributions.

Thus the transverse spin sum rule, although

it involves the transverse spin or transversity

quark and antiquark densities, does NOT in-

volve the nucleon’s transversity. The Tensor

Charge operator is NOT related to the angu-

lar momentum.
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Consistent with known result that

both
(

∑

q p
q
z

pg
z

)

and
(

∑

q Jq

Jg

)

Q2
→∞

=⇒
(3nf

16

)
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Consistent with known result that

both
(

∑

q p
q
z

pg
z

)

and
(

∑

q Jq

Jg

)

Q2
→∞

=⇒
(3nf

16

)

Is the Teryaev argument convincing ?!?

I have no idea!
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