
C207 problem set 1 solutions

a): Using
L = 4πR2σsbT

4 (1)

and solving for R gives, R ≈ 1015 cm. This is about 10,000 times the radius of the sun, and about
100 times larger than a red giant. The surface temperatures of young supernovae are not much
hotter than the sun, but the supernova is much brighter because of the huge emitting surface area.

b: We consider the mean intensity from a sphere emitting uniform intensity I0. At some point a
distance r away from the source we see from the geometry that intensity is non-zero only between
some angles (0, θmax), where θmax is defined by finding the ray that is just tangent to the sphere.
This gives

This gives

Jν = W (r)I0 where W (r) =
1

2
[1 −

√
1 −R2

sn/r2 ] (2)

At r = Rsn we have Jν = 1/2I0, which makes sense since someone sitting at the surface of the sphere
sees an intensity I0 coming from one hemisphere, but no intensity from the other. For r � Rsn

we expand the square root and find Jν = I0R
2
sn/4r

2. This makes sense because at this distance,
the solid area that the source covered can be approximated as just its cross-sectional area (πR2

sn)
divided by the complete sphere of that distance (4πr2).

c: Taking I0 = Bν(Tsn) and integrating over all frequencies gives

J = W (r)B(Tsn) = W (r)
σsbT

4
sn

π
(3)
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Since the supernova luminosity is L = 4πσsbT
4
snR

2
sn this becomes

J = W (r)
L

4π2R2
sn

(4)

In the limit r � Rsn this becomes

J =
L

16π2r2
=

1

4π

L

4πr2
(5)

This is not too surprising, since at large r the radiation is completely radial directed and so the
zeroth and first moments of the radiation field are equal. Thus J = F/4π where F is the flux.

d: The dust cloud is at a position (x, z) relative to the supernova. Rest et. al 2008 measured a
separation distance of 4.6 degrees which is ≈ 0.08 radians. Given the distance of D = 3 kpc, this
means that the x distance is

x = D tan−1(0.1 radians) ≈ 240 pc (6)

Note that Rest et al adopt a distance of D = 2.3 kpc, in which case x ≈ 184 pc.
The distance between the supernova and cloud is re = (x2 + z2)1/2. So we also need to figure

out z from the light travel time. The echoed light has to travel a distance re to get to the cloud,
and then another distance z to get back to the z = 0 point where the original supernova light was
emitted. The distance the light has to travel is thus

l = re + z = (x2 + z2)1/2 + z (7)

In this convention, z increases away from the observer. Note that Rest et al use the opposite sign
convention. At a given time, t, we may see echoes from the surface corresponding to a given light
travel distance, l = ct. Plugging this in and moving z over to the left hand side

ct− z = (x2 + z2)1/2 (8)

Now squaring both sides
c2t2 + z2 − 2ctz = x2 + z2 (9)

Finally, solving for z gives

z = − x2

2ct
+
ct

2
(10)

which is an equation of a paraboloid. Given that we know the time between Tycho’s supernova
and Rest’s paper is t ≈ 436 years, and we know the value of x from the image, we can solve find
z = 126 pc. Then we get the distance as re = 271 pc. These values are slightly different if one uses
D = 2.3 instead of 3.0 kpc.

e: Since the emission from the cloud is assumed to be due to isotropic scattering, the source function
is simply Sν = Jν(rc). We assume the source function is constant over the cloud, in which case the
solution to the transfer equation is

Iν = Ibge
−τ + Sν(1 − e−τ ) (11)

In this case, there is no background source (Ibg = 0) and we are in the optically thin limit, so
expanding in τ gives

Iν = Sντ (12)

A useful expression for optically thin sources. For a uniform density medium, the optical depth
along a ray with impact parameter p is simply given by τ = αs(p) where s(p) is the path length
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through the cloud along that ray (see Figure 1 of the problem set). From the geometry, we have
s(p) = 2[R2

c − p2]1/2 so that the brightness profile is

Iν(p) = 2JναRc[R
2
c − p2]1/2 = 2Jντ0[1 − (p/Rc)

2]1/2 (13)

where τ0 = αRc is the optical depth of the cloud radial from the center to the surface.

f: To get the flux, we need to integrate the specific intensity of eq. 13) over all angles.

Fν =

∮
µIν(µ)dµdφ = 2π

∫
Iνdµ (14)

Here µ is the angle the observer is looking to see intensity at an impact parameter p. From the
geometry,

µ = cos θ =
D

(p2 +D2)1/2
≈ 1 − 1

2
p2/D2 (15)

Where the expansion holds since D � p. We can convert the integral over µ into one over p by
noting

dµ ≈ pdp

D2
(16)

working to leading order in p/D we can take µ ≈ 1 and the integral becomes

Fν =
2π

D2

∫ Rc

0

Iν(p)pdp (17)

Plugging in our solution for Iν(p) and integrating we find

Fν =
4π

3
τ0(Rc/D)2Jν (18)

g: The emission coefficient is defined as jν = αSν . It gives the power emitted per unit volume,
per frequency bin, per steradian. If we integrate over all directions and over the cloud volume, we
therefore get the monochromatic luminosity (i.e., power per frequency bin)

Lν =

∮ ∫
jνdV dΩ = 4πjν(4πR3

c/3) (19)

where we used the fact that the emission is isotropic to get the factor of 4π and the fact that jν is
constant in space to get the volume factor. This then gives

Lν =
16π2

3
αJνR

3
c (20)

and dividing by 4πD2 to get the observed flux gives

Fν =
4π

3
τ0Jν(Rc/D)2 (21)

which is the same as that found in the previous part of the problem.

h: In the limit, re � Rsn the source function of the cloud is

Sν = Jν = Bν(Tsn)
R2

sn

4r2e
(22)
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Thus the observed flux from the echo is, using eq. 21

Fν,echo =
4πτ0

3
Bν(Tsn)

R2
sn

4r2e

R2
c

D2
=
τ0
3

[πBν(Tsn)]
R2

sn

D2

R2
c

r2e
(23)

Meanwhile, the monochromatic luminosity of the supernova is

Lν,sn = 4π[πBν(Tsn)]R2
sn (24)

(Don’t forget the factor of pi that comes in from the flux from a uniform intensity sphere. As a
check, note that when we integrate Bν over all wavelengths we get σsbT

4
sn/π so this expression gives

us the familiar luminosity of a blackbody sphere). The supernova flux is

Fν,sn =
Lν,sn
4πD2

=
πBν(Tsn)R2

sn

D2
(25)

so the ratio is
Fν,echo
Fν,sn

=
τ0
3

(Rc/re)
2 (26)

Plugging in values of τ0 ≈ 0.1 and the radii, we find the ratio is of order 10−13.
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