
1 Interactions of a Nearby Supernova

a) Taking
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and the fact µmpn = ρ, where µ is the mean atomic weight. We see that
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k
≈ 3× 109 (2)

This is quite hot. We know that 104K is roughly 1 eV, so this corresponds to 300 keV. The opti-
cally thin free-free spectrum (in frequency units) is roughly flat up until the cutoff frequency at kT.
Therefore in the Chandra bands around 1 keV, we expect a fairly flat spectrum.

b) The optically thin emission per unit volume due to free-free from fully ionized gas is, integrated
over all frequencies,

ε = Aρ2T 1/2 (3)

where A is a constant, specified on the webpage. The CSM density is given by
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Ṁw

4πr2vw
(4)

after the shock, the material is compressed by a factor of 4, so ρ = 4ρcam.
The luminosity from free-free is determined by integrating over the volume of the shell
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Using the relation r = vt we can write this as
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which scales as t−1. Inverting this expression gives a limit for Ṁw in terms of L.
To calculate the optical depth we use

τ =
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rin

αffdr (8)

where the extinction coefficient is
αff = Bρ2T−3/2ν−2 (9)

where B is a constant and we have used the limit hν � kT for the Chandra observations. Integrating
and plugging in numbers, one finds that the shell is very optically thin at these x-ray wavelengths.

2 Powering Radio Lobes

a) The observed spectrum looks like a power-law F ∝ ν−α, where α = 0.8. From synchrotron theory
we know the spectrum is given by α = (p− 1)/2, so we find p = 2α+ 1 = 2.6.
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b) The energy of an electron is γmec
2 so we write the energy density as

ue =
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2ndγ =
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Integrating we find

ue =
C

p− 2
mec

2γ−p+2
min (11)

where we take γmax to be essentially infinity. So we see

ue ∝ γ−p+2
min (12)

c) The expression for the synchrotron specific luminosity is

L ∝ V uB
νcyc

(ν/νcyc)−(p−1)/2 (13)

We know ν/νcyc = γ2, so we can write this at a the minimum frequency, νm, as
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We now replace γmin with the electron energy density. Rewrite the expression as
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Since UB ∝ B2 and νcyc ∝ B, we see

Lm ∝ V B3/2uev
−1/2
m (16)

and solving for ue
ue = ALmV

−1B−3/2v1/2
m (17)

where A is some constant.

d) The total energy density is

utot = ue + uB = A1B
−3/2 +A2B

2 (18)

where A1, A2 are some constants. To minimize with respect to the magnetic field we take the
derivative

∂utot

∂B
= −3/2A1B

−5/2 + 2A2B = −3

2
ue/B + 2uB/B = 0 (19)

Solving we see that

uB =
3

4
ue (20)
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