
1 Health Benefits of Negative Hydrogen

a) Since we assume LTE, we can apply the Saha equation

npne
nHI

= 2

[
2πmekT

h2

]3/2

e−χ/kT = Φ(T ) (1)

For pure hydrogen, we include the charge conservation equation, ne = np. This system has an
analytic solution

xHII = − Φ

2n
+

1

2n
[Φ2 + 4Φn]1/2 (2)

where n is the density. Plugging in numbers gives xHII ≈ 8 × 10−5. The optical depth to electron
scattering is, using the Thompson cross section and the scale height, H, is

τ = nxHIIσtH ≈ 5.4× 10−5 (3)

b) The expression for the free-free extinction coefficient is available on the webpage, and depends
on the product of np and ne. The optical depth to free-free is

τ = αffH ≈ 1.5× 10−5 (4)

c) The bound-free cross-section, in the hydrogenic approximation, can be estimated

σbf ≈
σtot

νt

(
ν

νt

)−3

(5)

where the threshold frequency is

νt = χi/h =
Rydberg

hn2
(6)

The cross-section is zero for ν < νt. The threshold wavelength for n = 1 is 912 Å, for n = 2 is
3648 Å, and for n = 3, is 7296 Å. Therefore the n = 1, 2 levels do not contribute any bound-free
opacity at a wavelength 5000 Å. For the n = 3 level, we need to determine the level population,
which we can using the LTE Boltzmann factor

n3 =
g3

U(t)
e−∆E/kT (7)

where the LTE partition function is

U(T ) =
∑
i

gie
−∆Ei/kT (8)

and the statistical weight is gi = 2n2 for hydrogen. Since the majority of the atoms are in the
ground state, one can approximate U(T ) ≈ g1 = 2, although it is not difficult to calculate the first
few terms. Putting it all together, we find the optical depth to bound-free in the n = 3 state.

τ = n3σbfH ≈ 3× 10−4 (9)

d) We can treat the H− fraction using the Saha equation in analogy to part a). The equation is then

nHIne
nH−

= 2

[
2πmekT

h2

]3/2

e−χ
−/kT = Φ(T ) (10)

where χ− = 0.75 eV. To this we must add the particle conservation equation

nHI + np + nH− = n (11)
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and the charge conservation equation
ne = np − nH− (12)

These equations, along with the Saha expression Equation 1 form a complete system of equations.
Solving this system of equations can get rather involved and is best tackled numerically. To simplify,
however, let’s make the ansatz that the density of of ionized hydrogen is much greater than that of
negative hydrogen. In this case, the free electron density is what we found in part a). We can then
easily solve the Saha equation to determine the number density of H-minus. Then, after the fact,
we can shows that nH− � nHII, which confirms the ansatz we made to start.

The threshold frequency for H-minus bound-free is νt = 0.75 eV/h ≈ 1.8× 1014 Hz. Plugging in
numbers we see that σbf ≈ 3 × 10−18. Calculating the optical depth we find τ ∼ 0.1. Given that
our hydrogenic cross-section is in lower than the actual value, this is not too bad.

2 Flipping Spins at the Epoch of Reionization

Define the excitation energy for the 21 cm line to be T? = hνfs/k = 0.068 K, where νfs = (c/21 cm).
We are always in the Rayleigh-Jeans limit since T � T? so the observed specific intensity is

Iν,obs =
2ν2
fs

c2
kTb, (13)

where Tb is the brightness temperature, which may or may not be related to the kinetic temperature
of the observed gas, TK . Lastly, the spin temperature Ts is defined as

n1

n0
=
g1

g0
e−T?/Ts = 3e−T?/Ts . (14)

a) Consider a CMB beam with specific intensity Bν(Tγ , νfs) ≡ I0 passing through a neutral
hydrogen cloud of optical depth τ . The radiative transfer equation tells us that

∂Iν
∂τ

= −Iν + Sν . (15)

If Sν is constant in space, we can let x = Iν − Sν and the solution to the above equation is

x = x0e
−τ . (16)

Substituting back in for x, we find that the observed specific intensity for the CMB beam is:

Iν,obs = Bν(Tγ , νfs)e
−τ + Sν(νfs)(1− e−τ ). (17)

Now, we must calculate the source function of the 21 cm line, Sν = jν/αν . In terms of the
Einstein coefficients, the extinction coefficient corrected for stimulated emission is

αν =
hνfs

4π
φ(νfs)n0B01

(
1− n1B10

n0B01

)
. (18)

Now use the Einstein relation B10/B01 = g0/g1 and substitute in for n1/n0:

αν =
hνfs

4π
φ(νfs)n0B01

(
1− e−T?/Ts

)
. (19)

Now use another Einstein relation A10 = (2hν3
fs/c

2)B10 = (2hν3
fs/3c

2)B01,
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αν =
3c2

8πν2
fs

φ(νfs)n0A10

(
1− e−T?/Ts

)
. (20)

Lastly, we can Taylor expand the exponential since Ts � T? to obtain the extinction coefficient
for the 21 cm line:

αν =
3c2

8πν2
fs

φ(νfs)n0A10

(
T?
Ts

)
. (21)

We can also express the emission coefficient in terms of the Einstein coefficients:

jν =
hνfs

4π
φ(νfs)n1A10. (22)

Now we can compute the source function by dividing the emission and extinction coefficients:

Sν =
2hν3

fs

3c2
n1

n0

Ts
T?

=
2hν3

fs

c2
Ts
T?
e−T?/Ts . (23)

In the limit of Ts � T?, we obtain the final result for the source function

Sν =
2ν2

fs

c2
kTs. (24)

Now return to equation 17 and plug in for the source function:

Iν,obs = Bν(Tγ , νfs)e
−τ +

2ν2
fs

c2
kTs(1− e−τ ). (25)

Plugging in for Iν,obs, we find the brightness temperature to be:

Tb = Tγe
−τ + Ts(1− e−τ ). (26)

Relative to the CMB background temperature, we have δTb ≡ Tb − Tγ , or

δTb = (Ts − Tγ)(1− e−τ ) . (27)

b) In statistical equilibrium, the balance of Einstein coefficients is

n1(A10 +B10J̄ + C10) = n0(B01J̄ + C01), (28)

or

n1

n0
=

B01J̄ + C01

A10 +B10J̄ + C10
. (29)

Use the following three Einstein relations:

B01 = 3B10,

A10 = 2hν3
fsB10/c

2,

C01 = 3C10e
−T?/TK .
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Also, the local mean intensity field J̄ is defined such that

J̄ =
2ν2

fs

c2
kTγ . (30)

Using the above 4 relations, we can express equation 29 in terms of C10 and A10. Defining
xc = C10T?/A10Tγ , we obtain the desired result:

T−1
s =

T−1
γ + xcT

−1
K

1 + xc
. (31)

From inspection of the above equation we see that Ts = TK when xc � 1

and Ts = Tγ when xc � 1 . When xc � 1, collisional de-excitation is dominant so the gas

collisions are setting the spin-flip level populations and the spin temperature will approach the
gas temperature. In the opposite limit, the level populations are being set by the radiative
transitions caused by the CMB so the spin temperature approaches Tγ in this limit.

c) We want to find the critical density such that xc = 1. For collisional de-excitation by neutral
hydrogen collisions, the rate is roughly given by

C10 ' σ10nHvH . (32)

We will assume the cross section is just the geometric cross section, σ10 = πa2
0, where a0 is the

Bohr radius. Assume a characteristic velocity of order

vH '
√
kTK
mH

. (33)

Plugging in we find the critical density to be:

nH,c =
A10Tγ
πa2

0T?

√
mH

kTK
. (34)

In class we estimated the spontaneous emission coefficient for hyperfine splitting to be A10 '
6×10−15 s−1. Using TK = 100 K and Tγ = 2.7 K, the critical density is roughly nH,c ' 3× 10−2 cm−3 .

d) The rate at which Lyα photons drive transitions from the excited to the ground hyperfine level
is given by P10. By LTE arguments (similar to the derivation for the relation between C10 and
C01 from class), we have

P01 = 3P10e
−T?/TK . (35)

Statistical equilibrium now including transitions due to Lyα photons is given by

n1(A10 +B10J̄ + C10 + P10) = n0(B01J̄ + C01 + P01). (36)

Analogous to part b), we can use the Einstein relations and the relation for J̄ to express the
above equation only in terms of A10, C10, and P10. The relation we obtain is

T−1
s =

T−1
γ + T−1

K (xc + xα)

1 + xc + xα
, (37)

where
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xα =
P10

A10

T?
Tγ
. (38)

e) From part a), the observed fluctuation in the brightness temperature is given by equation
26. Absorption occurs when δTb < 0 and emission occurs when δTb > 0. From inspection of
equation 26, the sign of δTb depends on the quantity Ts − Tγ , so we must determine the sign
of this quantity as a function of redshift.

(a) 200 ≤ z ≤ 1100

• nH > nH,c so we are in the limit of xc � 1

• we know from part b) that Ts = TK in this limit

• the gas and CMB are still thermally coupled so TK = Tγ

• so we have Ts = Tγ and δTb = 0 → no signal

(b) 40 ≤ z ≤ 200

• nH > nH,c still so we are in the limit of xc � 1 and Ts = TK
• the gas falls out of equilibrium with the CMB and cools adiabatically

• for a monotonic adiabatic gas, with no heating sources:

TV 2/3 = constant. (39)

The volume scales with redshift as (1 + z)−3 so we see that

TK ∝ (1 + z)2. (40)

The CMB temperature scales with redshift as Tγ ∝ 1 + z. Thus, we see that once
the gas falls out of equilibrium with the CMB, the gas will cool faster and TK < Tγ .

• So we have:

Ts − Tγ = TK − Tγ < 0, (41)

and we see that δTb < 0 → absorption.

(c) 30 ≤ z ≤ 40

• now nH < nH,c so we are in the limit of xc � 1

• we know from part b) that Ts = Tγ in this limit

• so we have Ts − Tγ = Tγ − Tγ and δTb = 0 → no signal

(d) 15 ≤ z ≤ 30

• the production of Lyα photons leads to Lyα scattering setting the spin-flip level
populations so xα � 1

• we know from part d) that Ts = TK in this limit

• due to adiabatic cooling and a lack of heating, TK < Tγ

• so we have Ts − Tγ = TK − Tγ < 0 and δTb < 0 → absorption

(e) 7 ≤ z ≤ 15

• the production of Lyα photons leads to Lyα scattering setting the spin-flip level
populations so xα � 1

• we know from part d) that Ts = TK in this limit

• first sources heat the gas such that now TK > Tγ
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• so we have Ts − Tγ = TK − Tγ > 0 and δTb > 0 → emission

(f) z ≤ 7

• reionization has ionized the universe so neutral hydrogen is negligible

• thus, xc = xα = 0 and Ts = Tγ

• so we have Ts − Tγ = Tγ − Tγ and δTb = 0 → no signal
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