1 The Rise of Stromgren Spheres

1a) Defining Nion (Nrec) as the total number of photoionizations (recombinations) per second that
occur in the surrounding gas, we have the expression

dNtot

= Nion - Nrcc 1
g (1)

As in the standard Stromgren argument, we say that all ionizing photons emitted by the star are
absorbed in the surrounding medium, thus Njo, is simply the number of ionizing photons emitted
per second, denoted by @

. * L,(v
N = Q = / #du 2)
Since we assume that all photons come out at a single frequency vy, we simply have
L
- = 3
Q= 3)

The number of total radiative recombinations per second is

Niee = ne”paBV (4)

where n., n, are the electron and proton number densities, V' is the volume, and we will use the ap
recombination coefficient (i.e., we will assume all ionizing photons are trapped in the HII region).
Finally, the total number of atoms in the HII region is Nyoy = nV. Assuming the HII region is
essentially totally ionized, n, = n. = n, where the total number density n is assumed to be constant
with radius. Then equation 1 can be written

dv
N =Q —nlagV (5)
which can be written Jv 0
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We see the characteristic scales are the recombination time t,.. = (nag)~! and the Stromgren

volume, Vy = 47 R3/3 = Q/n*ap, where the stromgren radius is

30 1/3

Ry,=|—7— 7
[471'71204 B} (7)

So a nice way to write the differential equation is

At e

awv - Vs |V 1
Vs

The solution is

I(V/V, = 1) = —t/trec + C (9)
The integration constant C' = 0 since the volume is zero at t = 0, so
V(t) = V(1 — e~ t/trec) (10)
or in terms of the radius
R(t) = Ry(1 — e~ t/trec)1/3 (11)



We see that as ¢ — oo, the radius of the HII region goes to Ry, as expected. The timescale for the
HII region to grow is given by the recombination timescale t,oc = 1/nap.

1b) At a temperature 7' = 10* K, the recombination coefficient is ap ~ 2 x 107!3. So plugging in
numbers we find
tree = (nag) ™' & 1.6 x 10° years (12)

This is comparable to the lifetime of an O-star, so the HII region will just about grow to its stromgren
radius when the star is about to die.

1c) We can find the velocity of the edge of the HII region by differentiating our solution

dR(t) R, e t/trea e
t)=—t =2 1 — e t/tec)=2/3 13
ot = G = e (13)
We could have guessed that characteristic velocity of the HII region expansion is

Vs ~ Ry [tree ~ 107 cm 571 (14)

This is about an order of magnitude greater than the sound speed ¢ ~ (KT/m,)"/? ~ 10% cm s~ 1.
Thus the HII region expansion is initially supersonic and we can neglect hydrodynamical effects.

1d) To determine the ionization state at a radius r, we apply the equation that expresses photoion-
ization equilibrium

hv

which states that the local photoionization rate equals the radiative recombination rate. Here o(v)
is the bound-free cross-section for hydrogen, and J,(r) the monochromatic mean intensity of the
radiation field at radius r. Assuming the radiation source is an isotropically emitting point source
of intensity I,, and radius R,, and there is negligible attenuation above it (which should be OK at
very small radii) we can use the standard result

47 /000 Jy(r)a(u)nHI = NeNpop (15)

I,R?
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The monochromatic flux at the surface of a lamber radiator is F,, = wI, and so the monochromatic
luminosity is

L, = 47 R?F, = 47*R?I, (17)
So we can write the monochromatic mean intensity as
L,
YT 16722 (18)
Using this value, the photoionization equilibrium equation becomes
Qoo
1oy HL = Nelp0p (19)

where oy = o(vp). Defining the ionized fraction g = ngrr/n, we have for pure hydrogen, n, =
n, = zyn and nygy = (1 — xg)n and so

47Qn
2

(1 —an) =n*2%ap (20)

Dividing both sides by n?ap, we can write this in dimensionless form

21Qoy
nr2apg

20(1 — wy) = 23, where Q =



Where the dimensionless quantity €2 is apparently the useful measure for how strong the ionization
is. We can now solve the quadratic equation for xy

o = —Q+ /02 +20 (22)

and hence
J}lel—.’L‘H:l—f—Q—\/QQ—i—QQ (23)

We should check our limits. For a very weak source (L — 0 at fixed r), we have Q@ — 0 and find
no ionization g = 0, as expected. For a very strong source (L — oo at fixed r), we have Q — oo,
and we need to take a little more care in taking the limit. We use a Taylor expansion in the small
quantity 2/€:

tr=-Q+Q1+2/0Y? =~ -Q+Q1+1/Q+..)~1 (24)

As expected, the medium is totally ionized.

1e) To find the small r behavior, we note that this is the limit 2 — oo, so we use an Taylor expansion
similar to the above, but keep another term

r =1+Q-001 42/ ~1+Q-Q1+1/Q—1/40% + ..) (25)

Thus to lowest order in 1/ we find

1 r’n
THI ~ 10 X I (26)



2 Chilling in the Halo

Provided by Io Kleiser and Janos Botyanzski

Problem 2

2a

We have the cooling time for hydrogen from class:

£, =9 % W 20, e, (17)

The problem saye the mass of hydrogen gas is on the order of the dark matter mass, so let's

assume M is the mass of hydrogen. This gives us np = » 2. Setting f, = t4,, gives the
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Doing algebra and using the definition of the virial temperature to get M ~ kaT R/ Gmy.,

we find that the temperature cancels and we get the expression for H.:

|
damgp 9= 101
50 we indeed find that the radius is on the order of 80 kpe.

= 2.16 = 10*cm = 70.2kpe, [1%)

Z2b

Free-free emission is dependent on the amount of free electrons and protons present in the
gas. Therefore, we need to calenlate the fraction of ions given & certain temperature and the
assumption of CIE (eollisions! jontzation equilibrium):

AurCi: = NHnam. (20)
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From this we can derive that

Cle EN?/ T
Y = o =13x 1015<—> (—)e—x/kT (21)
Ny Q4N X T
And we can write
o nm o ni Y (22)

ng  nit+nn 14+ yn
These will be important when writing out the electron and proton densities in what follows.

The emmission is given by

e = 1.4 x 10727 Z2nonn T2 gg (23)

We have already calculated ny; above. Assume that gy ~ 1, set Z = 1 for Hydrogen, and

convert to dimensionless units. Then

T 1/2 3
Ag=— —14x10 5 ( ) ore cm (24)

NeNp L+ yn T s

For bound-free emission, again the proton and electron fractions are important. The emission
is
T\ 12
et = 3.25 X 1013nenikBT<—> (25)

1y

Convert to dimensionless units. Then

T\"? erg cm?®
Ayt = —5x 1075 (-) 2%
bt NeNH I +yn \ T4 S (26)
For Lyman-a emission,
€Ly—o ~ hV0n2A21 = hyon1012 (27)

where v is the frequency associated with the Lyman-« transition, As; is the rate of transi-

tions from n = 2 — n = 1, and (' is the rate of collisional excitation fromn =1 —n = 2.



Using the formulae derived in class, we can rewrite C'5 in the final expression to get

B\ —1:68
€Ly—a & 2.16hvgnine f <k—;9> T3/ hvo/kT (28)

where f &~ .5 is the oscillator strength of the Lyman-« transition and n; is the fraction of
neutral Hydrogen atoms in the ground state (assmue n; & n;). Converting into dimensionless

variables, we have

—.68 —-1/2 3
€ 18 Yy hy T erg cm
ALyfa = m =4 x10 181 o (/{—T) (i) S (29)

To calculate the fraction of neutral Hydrogen, write

1
ni _ ni _ (3())
Ntot N1 +nm 1+ Yny
So putting these together,
1 ho\ "%/ T\ 7 erg em?®
Aty = =4x107"® — — 31
b NN L+ Yoy ( kT) Ty S (81)

2c

The probability of absorption into the thermal pool is just the probability of collisional

de-excitation. We can write this as

02 1

P=—=_ 32
Co1 + Ay (32

where As; = 6.3 x 103! (from NIST) and at T' = T}, n, = lem ™3,
Cy =5 x 107371 (33)

Plugging these values into the above equation, we have

R EY (34)
Ca1 + Ay

So there is a very small probability that absorption into the thermal pool will take place.



2d

We solve the following balance equations

TL5C56 = TLGR65 (35)
n6067 = TL7R76 (36)
Noxy = N5 + N + N7 (37)

First divide the latter equation by ng and invert to get

—1
n n n
° ={—5+1+—7} (38)
Noxy Ng Ne
R Cor] ™
Now plug in the relations from above to arrive at e _ {ﬁ + 1+ —67]
Noxy Cse Rz

2e

Look at the Grotrian diagram for the OVI ion. You can see that the first excited state is a
short energy step above ground state (AE = 12eV). From this we can confidently say that
mostly the ground and first excited states will be populated. The cooling will therefore be
dominated by the transitions n =2 —n = 1.

For OVII, the lowest energy level transition requires a A = 22A photon to excite the electron
to that level,, or a gas temperature of AE/k = 6 x 10% Kelvins. This is outside of our
temperature range, so we can neglect this temperature.

For OVIII, the lowest energy level transition requires a A = 18A photon to excite the
electron to that level,, or a gas temperature of AE/k = 8 x 10° Kelvins. This is outside of
our temperature range, so we can neglect this temperature.

But a transition for OV only requires a A = 1218A photon to excite the electron to that
level, or a gas temperature of AFE/k =1 x 10° Kelvins. Plenty of particles will have enough

energy to impart collisionally to excite this transition.



2f

Here we derive the cooling function for the line transition of OVII. We assume CIE again.

Start with the expression for emission:

eovi = NaAg1 hiy

(39)

where v is the frequency associated with the line transition and ns is the number density

of particles in the excited state of OVI. Assuming collisional de-excitation is a negligible

process. Then

ngAgr = n1Cha = (nOVI - nz)Clz

Rearranging:

Ng = NovI 1o
Cia + Ag
And recall from section (2d)
-1
novt _ {%4_14_%}
Noxy Cse Ry

Assuming solar abundances, we can make the following conversion

novi XH,sol novi

Noxy X, oxy,sol TUH

where we have defined Xoxy sol = Toxy /Mot i the sun. Thus, finally, we can write

Xoxysol [ R Ces1 " C
nzan#[ﬂ+1+—m] S
Xtsol | Cse R Cia + Ay
Putting it all together,
€ KXoxy,sol -R65 Cer - Cia erg cm?
Aovi = = hygAg =225 | =2 + 1+
ovi NeNy o Hsol | Cs6 R Cia + Ag S
where
- -1
Clo =39 n.f %] T—3/2¢=hvo/kT

(40)

(41)

(42)

(44)

(45)



for vy corresponding to the line transition,

_ [ X6 | —3/2 ,—xs6/kT
Cs6 =2 | == |T Xs6
56 n LT e

[ Xe7 | —3/2_—xe7/kT
AL T X67
kT ‘

067 == 2.77’Le

R65 =2 X 10713Z2(T/T4)71/2

for Z=T7,

R =2 x 1078 2%(T/T,)~/?

for Z=6.
The cooling functions from section (2b) and (2f) are plotted in Fig. 1.

Figure 1: Cooling function. Courtesy of J.L. Barnes.
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